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AaSTRACT: A differential dynamic programming (DDP) procedure is applied to solve both linear and non-
linear estuarine-manageme~,t problems to determine the optimal amount of freshwater inflows into bays and
estuaries to maximize fishery harvests. Fishery haivests are expressed in regression equations as functions of
freshwater inflows. The optimization problem is posed as a discrete-time optimal control problem in which
salinity represents the state variable and freshwater inflow represents the eon’trol variable. Both linear and
nonlinear regression equations that relate salinity to freshwater inflow are used as the transition equations.
The bound constraints for the control and state variables are incorporated into the objective function using a
penalty-function method to convert the problem into an unconstrained formulation. To guarantee the quadratic
convergence of the DDP procedure, a constant-shift and an adaptive-shift method are used. The DDP pro-
cedure is applied to the Lavaca-Tres Palacios estuary in Texas and the results are compared with a nonlinear
programming solver. This work demonstrates the potential of DDP for developing a more complex model
that uses a two-dimensional hydrodynamic-salinity transport model for the transition.

INTRODUCTION (see Figl I)~ The computer model developed using the DDP
method can provide a useful ton for decision makers to qnan-

In many m:eas of the United States, particularly the Gulftitatively analyze water-management strategies. The major
coast states and California, estuaries are important naturalpurpose of this paper is to demonstrate the potential of the
resources because they provide areas of nursery habitats forDDP for developing a more complex model that uses a two-
juvenile forms of marne species, for sport and commercialdimensional hydrodynamic-salinity transport model for the
fishing, and for other recreational activities, transition.

The ecosystem of an estuary is largely dependent on the
amount, as well as the seasonal and spatial distribution of

ESTUARINE MANAGEMENTfreshwater inflows and the associated nutrients. Freshwater
inflows enter the estuary from rivers and streams and fromThe estuarine condition results from the interaction of sa-
local rainfall runoff. Freshwater dilutes the saline tidal waterlinity, nutrients, and key organisms with factors such as tide,
seaward and transports nutrient and sediment that maintainwind, precipitation, evaporation, and some unique conditions
marsh environments and contribute to the estuarine produc-associated with the specific estuary. The primary indicators
tion of fish and shellfish, are salinity and nutrients. Salinity is an index, which has been

An estuarine system is complicated because of the inter-well established to indicate ecological conditions in an estu-
action of many physical, chemical, and biological parameters,ary, because it can measure the relative proportion of fresh-
Among the parameters influencing estuarine productivity, manywater to sea water. The lower and upper salinity bounds for
are beyond our control, such as wind and temperature. Es-a specific organism are set based on either the presence of
tuarine management is a means to maintain the estuary, systemthat organism in the estuary as reflected in the catch data and
in a desired condition by adjusting the controllable param-corresponding salinity value, or on the salinity physiological
eters. Since freshwater is one of the most important param-dependence for viable metabolic and reproductive activity as
eters to the estuary system, in essence, estuarine managementrevealed by laboratory studies. The mathematical relationship
is to manage freshwater resources in order to provide anbetween salinity and freshwater inflow in the estuary is de-
optimal estuarine environment. The specific action of es-veloped based on statistical association, i.e., a regression form
tuarine management can be in several forms, such as mini-established from field data by the Texas Water Development
mizing the total volume of freshwater into an estuary, max-Board (Texas 1980).
imizing the upstream water uses, or maximizing the commercialIn the estuaries of Texas,
fishery harvest.

In this paper, the mathematical programming model for
estuarine management is reformulated as a discrete-time op-
timal control problem. The differential dynamic programming

?t~,,=.m~i~,a m,~(DDP) method is used to solve the problem. The objective
function is the enhancement of fishery harvest, i.e., to op- ~ g’ ~
timize the freshwater inflow into bays and estuaries to max-
imize the total annual commercial harvest of selected fish
species while meeting the viability limits for salinity, and sat-
isfying monthly and seasonal freshwater inflow needs. The
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TABLE 1. Regression Equations of Fishery Harvest and Fresh- optimization problem and solved it using linear programmiw,.
water inflow Relation (Texas 1980) ,’. This pi’oblem was also solved as a chance constrained no~-

" Inflow used in regre~ion linear programming problem by Tung et al. (1990) using GRG2
Spices Equations equation (Lasdon and Waren 1986). Bao (1992) and Bao.and Mays

(1) (2) (3) (1994) solved the estuarine problem as a discrete-time optimal

All shellfish HI = 3107.9 - 11.3Q51= Freshwater inflow at Lavacacontrol problem using a mathematical programming approach
+ 7.7QS.b - 24.2QS~° Bay interfacing GRG2 with the two-dimensional hydrodynamic-

All penaeid H.. = 1735.~ - 3.7QStCombined freshwater in- salinity transport model HYD-SAL (Texas 1980). Mao and
shrimp + 2.7QS: - I.OQS~ flows from all contribut- Mays (1994) formulated the estuarine-management problem

,- ing rivers and coastal as a multiobjective goal programming problem and solved it
drainage basifis using the nonlinear solvers, GAMS (Brooke et al. 1988) andBlue crab H3 = 208.3 + 2.7QS~ + Combined freshwater in-

0.4QSp + 0.5QS~~ flows from all contdbut- GRG2. Other multiobjective models for the estuadne-man-
ing rivers and coastal agement problem were developed by Shi (1992), LeBlanc
drainage basins (1993), and Siebert (1993).

=January-March. In this paper, the DDP method is applied to the Lavaca-
"April-June. Tres Palacios Estuary in Texas, shown in Fig. 1. The mag-
�July-August. nitude of freshwater inflow is one of the most important fac-
"September-October. tors controlling the changes in estuarine salinity patterns. The
�November-December. main freshwater inflow sources considered are the Colorado

¯ River, which principally influences Matagorda Bay, and the

abundance is available on the data of commercial fishery land-Lavaca River, which principally influences Lavaca Bay. The
ings taken from the estuary. This fishery harvest data can befreshwater inflow in this estuary is controlled by releases from
employed as an index to populations of key organisms andthe upstream reservoir of the Highland Lake System in the
can be statistically analyzed to establish its dependence onColorado River Basin and Lake Texana in the Lavaca River
freshwater inflow, H,~ = f(Q). The regression equations ofBasin. The main advantage of the DDP method is that no

fishery harvest and freshwater inflow are listed in Table 1discretization of the control and state space is used as corn-

and were developed by the Texas Water Development Boardpared with dynamic programming. The computational effort

(Texas 1980). [In Table 1, Hk is the commercial harvest into solve for a nonsteady control policy increases only linearly
thousands of pounds (1 lb = 0.45 kg), and QSj is the meanwith the number of time steps N. In contrast, when using a
monthly freshwater inflow during the season in 1,000 acre-ftnonlinear programming algorithm, the computational effort

to solve for a control policy that changes with time would
(i acre-ft = 1,233.5 ma).] increase rapidly, typically NR, where 2 < R < 3 (Culver andThe estuafine management problem can be formulated with
different management objectives or even as a multiobjectiveShoemaker 1992). Therefore, the DDP method may have an
problem. One of the objectives is the enhancement of fisheryadvantage over mathematical programming approaches, es-
harvest of selected fish species while meeting the viabilitypecially when the equality constraint is a complex simulation

o model.limits for salinity and satisfying monthly and seasonal fresh-
water inflow needs. The mathematical model can be ex-
pressed as follows:                                   ALGORITHM DESCRIPTION

max ~ H, (1) DDP algorithms have been used in water-resources appli-
cations such as reservoir operation and ground-water-man-

S,4 = 13oQ,~.) (2) agement problems (Chang et al. 1992; Culver and Shoemaker
1993). Unconstrained discrete-time optimal control problems

Q,.i <- Q,.i <-- ~,.i (3) have the following general form:
S,.i <- S,.~ <- ~,., (4)

rain J= ~ g(x,, u,, t) (6)

where Hk = fishery harvest for the kth species (1,000 lb or subject to x,÷t = T(x,, u,, t) (7)
1,000 kg); Q,.i = tth monthly inflows from the .ith river (cfs
or m-~/s); S,.i = tth monthly average salinity at a specifiedt = 1, 2,..., N - 1, N, x~ = x~ is given and fixed, where
location in the estuary, for river ./(ppt); 13o and 13t = coef-x, = state variable; u~ = control variable; g(x, u,, t) = loss
ficients; ~,.i and S,.i = upper and lower limits on monthlyfunction; and T(x,, u, t) = transition function.
average s.alinity at a specified location in the estuary, for riverThe DDP algorithm is an iterative algorithm in which, at
j (ppt); Q,.i and Q,.i = upper and lower limits of monthlyeach iteration, there are two sweeps. (1) A "backward sweep"
freshwater inflow’-(’cfs or m3/s); QSi.,, = mean monthly flowto compute a series of coefficients following the dynamic pro-
in season n from river j (cfs or m~/s), where QS~.,, = (1/N~)gramming optimal scheme; and (2) a "forward sweep" to

Y,~u,, Q,.i, M,, is the set of months in season n and N, is the
update the sequences of state and control variables (x,, u,)

number of months in season n; and Q-’~.~.,, and Q_Q~S.., = upperthrough the transition equation and the feedback function
and lower limits, respectively, on the mean monthly fresh-= c~, q- I3,(x, - x,~) + u~ forward in time. An algorithm
water inflow in season n from river j (cfs or m~/s), description of the DDP algorith~was given by Yakowitz and

Eq. (2) defines the relation of the state variable (salinity)Rutherford (1984).
and the control variable (freshwater inflow) at time t. Con-The practical optimal control problems often include con-
straint (3) defines bounds on the monthly inflows. Constraintstraints that can be expressed as
(4) defines bounds on the monthly salinity, and constraint (5) L(x,, u,, t) -> 0 (8)defines bour~ds on the monthly inflow during the season.
Alternatively, the objective function (1) could be substitutedSeveral techniques can be used to handle the constraints (Jones
to minimize freshwater inflow with the same constraint set.et al. 1987; Yakowitz 1989; Andricevic and Kitanidis 1990;

Martin (1987) was the first to formulate this problem as anChang et al. 1992). One technique is through the use of a
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penalty function in which the penalty function P(x,, u. t, R)-verges to an optimal policy.. To overcome this problem, the
is ass~%(ed ,~,~h ~h~’~:t~i~u ~ c~ust~aints and is added tostep-search technique of the unconstrained DDP method is
the objective function. There are many kinds of penalty fttnc-modified as follows:
tions that can be used. Some penalty functions are compli-
cated, and include the estimation of many parameters. Here,Step 1
a very simple penalty function, a bracket penalty function
(Reklaitis et al. 1983), is selected in the algorithm descriptionGive the inner optimal convergence criterion e~, th~ overall
and model formulation. In the application, the Lagrangianconvergence criterion 0,,~., and the bound violation criteria,
penalty function (Luenberger 1984)’and the hyperbolic pen-modify (12) and (13) as follows:
alty functions (Lin 1990) are also used to compare the effect
of different penalty functions. -~ u, = a, + I~,(x, - x~) + tt~ (16)

The bracket function has the following form: %÷ ~ = T(x,, u,, t) (17)
P(x,, u,, t, R) = R. [L(x,, u,, t)]z (9) The test (15) is modified as

where R = a penalty parameter, which is a numerical value
max ]u, - u~]that must be assigned; and (L(x,, u,, t)) = constraint viola-

[L(x,, u,, t)] = 0, if L(x,, u,, t) > 0 (10a) If (18) is satisfied, the DDP inner optimal is reached. If (18)
- is not satisfied, update the current control policy and the test

[L(x,, u,, t)] = L(x,, u,, 0, if L(x,, u,, t) < 0 (10b)(18) is again computed until the inner optimal is reached.

The penalty function is added to equation (6) so that theStep 2
augmented objective function becomes

If
N

rain ] = ~ ~(x,, u,, t, R) (11) reached, check whether the bound violations sat-Otherwise,
isfy the given criteria. If the criteria are satisfied, keep the
same penalty parameters, otherwise update the penalty pa-

where rameters and repeat the iteration process until an overall
d;(x,, u,, t, R) = g(x,, %, t) + P(x,, u,, t, R) optimal is reached.

Computational results show that the modified step-search
The step-search technique of the DDP method by Yakowitztechnique can make the constrained DDP procedure con-

and Rutherford (1984) for unconstrained problems is nowverge to an optimal control policy. The flowchart of the rood-
briefly described. ~ is defined as a positive number, and theified DDP method is shown in Fig. 2.
policy u(~), associated with the components (a,, I~,), is de-
termined by the following recursive formulas applied for t =MOD~L FORMULATION
1.2 .....N

To formulate the optimal control problem, the objective
u,(a) = uf + ~a, + 13,(x, - xT) (12) function must be separable. In the estuadne-management

x,÷ ~ = T[x,, u,(~), t] (13) model, the objective function is to maximize the summation
of fishery harvest. Fishery. harvest is expressed in terms of

The procedure initially sets ~ = 1 and defines 0t as mean monthly freshwater inflow per season, as illustrated in

1 ~’ Table 1. Three fish species are considered for the objective,
0t = ~ ~ - D,rc;’tD, (14) i.e., all shellfish, all penaeid shrimp, and blue crab. These

,~- regression equations were developed by the Texas Depart-
where C,, D,, a,, and 13, = matrices of coefficients definedment of Water Resources (1980). A s._e_parable objective func-
by the current control policy and trajectory. If the followingtion can be obtained by replacing the monthly freshwater
relationship is satisfied: inflow in each season with monthly freshwater inflows as

1<        05)
then u(~) is accepted as the successor policy and is used in
the next DDP iteration. Otherwise, ~ is redefined to be one-
half its former value and the policy u(~) and the test defined t~,~c~-~
by (15) are again computed. This process of halving ~ and
computing and testing u(~)continues until acceptance occurs.
But for the constrained problem, this step-search technique [                    s,~,-v~I
of finding the optimal policy needs to be modified. When the
control or state variable ’~step outside" the constrained region
(Murray and Yakowitz I979), the positive penalty terms are
added to the objective function. The successor policy u(~)
may result in a worse objective function value than the current
control policy u~. If using (12) and (13) u(e) converges to
such a nonoptimal policy, then the step-search technique fails
for the constrained problem, especially when the initial policy
is far from an optimal policy. Only when an initial guess is _~ u~, ~ ~s~, ~_
sufficiently close to an optimal policy can the optimal control
policy be reached. Thus, much work must be performed to
find a suitable initial policy so that the sequence u(~) con-             FI~. 2. Flowchart of Modified DDP Method
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¯ ~" " to the beginning of months t and t + 1 for dyer j; and
max J = ~ ~ g(Q,.i, t) (19) = t monthly freshwater inflow (cfs or m~/s) from river j.

The bound constraints on monthly freshwater inflow and
where g(Qt.i, t) = (a,j + b,./Q,.i) = regression e~iuationsthe bound constraints on monthly freshwater inflow in each
expressed in terms of freshwater inflow; a,.i and b, i = coef-season can be combined together as the bound constraints of
ficients that are given in Table 2; N = time period; and mthe control variable (freshwater inflow)
= dimension of the control variable. It is convenient to trans-
form the maximization into a minimization; thus, the objee-           max(Q,,i, OSj.,) <- Q,.i <- min(0,.i, Q"~j.,)    (23)
tire function for the estuarine-management problem becomes . where Q_S.., and QSi ,, = lower and upper bounds of mean

monthly freshwater "~nflow in season n, respectively. Let
min g(Q,.,,0 (20) max(n,.,, and -, -- -=- ’ = . Q,.i min(Q,.~., QSj.,),,- t ~- ~ then the combined bound constraints on monthly freshwater

The DDP method requires the state transition equation toinflows are
represent the relationship of the state variable at time t and
at time t + 1. In the estuarine-management problem, salinity Q,’.i "~ Qt¯/ "~ 0t’.i (24)
is chosen as the state variable, and monthly freshwater inflowThe values of combined bound constraints for monthly fresh-
is chosen as the control variable. For the sake of illustration,water inflow are listed in Table 5.
both linear and nonlinear regression equations serve as theUsing the bracket penalty function, the penalty term as-
state transition equations for the DDP model. The transitionsociated with combined bound constraints on control varia-
equations, were derived from historical data (Texas 1980).bles is
Both linear and nonlinear state transition equations of the
following format were used: Pt = Rt.(min{0, min[(Q,.~ - Q~’.t), (~2,’.~ - Q,.i)]})" (25)

S,+t.~ = a; + b;S,.~ + c;Q,.~ (21) According to the DDP algorithm, it is known that S,+t.i is
determined by S,4 and Q,.i, and that meanwhile S,, t., should

S,.t.i ~ + b~S~.i + ~Q,.i + diS,.~Q,.i + e~S,.i + f iQ;.i also satisfy its bound constraint, i.e.. St÷t.i ~ St÷l.i ~ ~÷t.i.
(22) This means that the control variable Q,.i is determined such

- , ,, , that S,÷,.i is also within its bounds. The value of the salinity
where a~, bi, c;, a[, bi, ci, d}’, e], and f7 = coefficients thatbound constraints are listed in Table 6. The penalty term
are determined by the least-squares method and are listed inassociated with the bound constraints of the state variables
Tables 3 and 4; S,4 and S,÷ 14 = salinities (ppt) correspondingis .,

TABLE 2. Coefficients a,.t and b~t in Objective Function Pz = R.." (min{0, mini(S,÷ t.i - S,. t.i), (~,+ t.i -- S,+ I.i.)1})z

a,., b,,t (26)

Lavaca Matagorda Lavaca Matagorda After introducing the penalty function into the objective
Month Ba~; Bay Bay Bay function the augmented optimal control model is represented
(1) (2) (3) (4) (5) as

January 463.06 74.57 - 0.307 - 0.076
February 455.05 66.56 -0.278 -0.068 min ~ = ~ ~ d(Q,.i, S,i, t, Rt, R..) (27)March 464.3 75.81 -0.307 -0.076 ¯
April 531.18 142.69 0.206 0.054
May 559.98 171.49 0.213 0.055 subject to S,÷ t.i : T(S,.i, Q-,.i, t) (28)
June 552.33 163.84 0.206 0.054
July 427.45 38.96 -0.661 0.083 where ~(Q,.i, S,.i, t, R~, Rz) = -g(Qt.i, t) + P~ + Pz; and
August 427.9 39.41 -0.66t 0.083 P~ and Pz : defined by (25)-and (26), respectively. TlaeSeptem-b-~r 32.46 32.46 0.012 0.012 transition (28) is defined by (2I) or (22) for linear or nonlinearOctober 31.66 ,31.66 0.012 0.012
November 120.97 120.97 -0.015 -0.015 transiton equation, respectiyely, for the example application
December 118.6 118.6" -0.015 -0.015 presented here. Other forms of nonlinear transition equation

could also be used.

TABLE 3. Coefficients of Linear Transition Equatlons CONVERGENCE OF DDP PROCEDURE
Coefficients ’:

- To guarantee the quadratic convergence of the DDP pro- "i:
Sum of cedure, it is required that the stage-wise Hessian matrices C,

squares of computed in the algorithm are positive-definite; otherwise
Rivers        a~’ b~’ c~’ residual the DDP procedure may not converge. Two methods are

(1) (2) (3) (4) (S),, employed to obtain the positive definite Hessian matrices C, ~-
Colorado River 1.323 0.611 0.002 22.2111 in this paper¯ A constant-shift method and an adaptive-shift
Lavaca River 4.751 0.641 0.001 23.1823 method..The constant shift method is as follows:

TABLE 4. Coefficients of Nonlinear Transition Equations

Coefficients

i Surn of squares
Rivers a~’ b~’ c~’ d}’-., e~’ f~’ of residual

(1) (2) (3) (4) (5) (6) (7) (8) ’:
Colorado River 0.0531 3.0014 -0.0147 0.0007 -0.1539 0.0000029 12.6572 .~,~
Lavaea River 37.7043 - 1.7045 0.0024 -0.0014 0.1004 0.0000057 6.9212
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TABLE S. combined Bounds of Freshwater Inflow because of the numerical problems. Therefore, the constant-

. Lavaca River Colorado River
shift method is suggested for a nonlinear transition equation.

Lower Upper Lower Upper SELECTION OF PARAMETERS
bounds hounds bounds bounds

Month (cfs) (cfs) (cfs) (cfs) When using the constant-shift or the adaptive-shift methods
(1) (2) (3) (4) (5) to modify C,, parameter .s~ has a significant effect on the

January 37 1303 :~93 ’ 3,009 ; convergence speed of the DDP procedbre. If ~ is too small
February 41 2,107 °324 3,331 the procedure can become divergent because of numerical
March 37 1,903 "293 7,500 problems. If s" is much larger, the convergence speed is very
April 62 6,400 392 7,600 slow. Generlly, ~� should be adjusted according to the prac-
May 60 7,300 379 8,863 tical problem. The first derivative of the objective function,
June 62 8,286 392 9,209 with respect to the control variable (~e(Q,.i, S,.i, t, R~, R2),
July 114 732 276 6,017
August t 14 732 276 2,900 has some relation to
September 294 3,272 387 5,024 should also be small so that the number of iterations to reach
October 285 3,I66 374 4,879 the optimal solution for each time t is as small as possible.
November 114 1,739 573 7,865 In the estuarine-management problem,
December 111 1,683 496 6,200 Iows:
Note: I cfs = 0.0283 m~/s.

TABLE 6. Salinity Bounds of Upper Lavaca Bay and Eastern Arm
of Mat~gorda Bay .The parameter

has a relation with the first derivative of the objective function
Lavaca Bay Matagorda Bay with respect to the control variable

(Lavaca River) (Colorado River) For the estuarine-management problem, ~ is chosen as
Lower Upper Lower Upper

bounds bounds bounds bounds B = 0~001 if [~(2(Ot.p S,.i, Rz, R2, t)l <- 0.1
(33)

Month (ppt) (ppt) (ppt) (ppt) B = 0.002 if [(~e(~,.~, S,.i, Rt, R:. t){ > 0.i
(1) (2) (3) (4) (S)

January l0 20 I0 30 M~ is the number of iterations of the constant-shift pro-
February i0 20 10 30 cedure when the adaptive-shift method is used. If M, is too
March I0 20 10 25 small, the control policy may be far from the optimal policy.
April 5 15 5 20 Therefore, when switching to an active-shift procedure, the
May 1 15 5 20 convergence speed is very slow. If Mt is too large, there can
June 1 15 5 20 be many useless iterations. A suitable Mt should be a value
July I0 20 10
August 10 20 I0 25 such that the total number of iterations is as small as possible.
September 5 15 5 20 M~ = 10 is suggested for the estuarine-management problem.
October 5 15 5 20 It is known that when penalty parameters approach infinity,
November 10 20 10 30 the penalty terms approach zero. However, for practical prob-
December I0 20 I0 30 lems, it may not be necessary to make penalty parameters go
Note: Principal river shown in parentheses. . to infinity. The values of R~ and Rz should be such that the

penalty terms on state variables and control variables have
Pick a constant

C~ is positive-definite where
water inflow, has the order of 10~ and the-gtate variables have

--

where a~ = a positive number; and I,, = identity, force these two penalty terms to reach the same level of

The adaptive-shift method suggested by Liao and Shoe-penalty as the objective function. The values of R, = 10 and
R,. = 10,000 were used. R, and R,. are updated according tomaker (1991) to obtain positive-definite Hessian matrices

was used. The main steps are as follows: the following method:

R~
1. Adopt the constant-shift method where k= number of iterations and2. For a given constant

ARt = 10 when max[max(lQ,./- Q~.A,

(36a)
where

a - k(¢,), if k(C,) < ~             ,.i        --
~’ = 0,       if X(C,) >--

k(C,) = minimum eigenvalue of C,. ARe = 10 when max [max(IS,./- S,’.i[, I$,’.~ - S,.il)] >-- ~s
t,]

The adaptive-shift method consists of a constant shift pro- (37a)
cedure (step 1) and an active shift procedure (step 2). For a
linear transition equation, the convergence speed of using the
adaptive..shift method is faster than that of using the constant- "~
shift method. For a nonlinear transition equation, eompu- (37b)

tational results show that use of the adaptive-shift methodwhere ~e and es = given bound violation criteria for fresh-
does not always result in positive-de~nlte Hessian raatHeeswater inflow and salinity, respectively.
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APPLICATION TABLE 10. Optimal Monthly Freshwater Inflows and Rshery Har-
vests for Linear Trans~tlon Equations Using Different Methodolo-

Tl~e DDP method for linea.r and nonlinear transition �qua-glen
tions is applied to the Lavaca-Tres Palacios Estuary in Texas.

MATHEMATICAL PRO-The optimal monthly freshwater inflows and fishery harvest GRAMMING METHOOfor linear and nonlinear transition equations are listed in Table DDP METHOD" (USING GAMS)~7. Results indicate that for the Lavaca River, the monthly
freshwater inflows in January, February, March, July, Au- Optimal Freshwater Inflow Optimal Freshwater Inflow
gust, November, and December are small in many cases and (efs) (efs)
are at the lower bounds. This~s because the coefficients of .Lavaca Colorado Lavaea Cotorad0-
freshwater inflow in the fishery harvest equati0n (for all shell-Month River River River River
fish) are negative values. For the Colorado River, the fresh-(1) (2) (3) (4) (5)

January" 37 293’ 37 293
TABLE 7. Optimal Freshwater Inflows and Fishery Harvest for February 1,112 324 1,112 324
Different Transition Equations March 12.83 293 1,284 293

April 3,784 6,070 3,784 6,070
Unear Transition    Nonlinear Transition May 2,256 2,429 2,256 2,429

Equation Equation. June 2,257 2,429 2,256 2,429
July 656 6,017 659 6,017Freshwater Freshwater Freshwater Freshwater August 732 2,900 732 2,900inflow from inflow from inflow from inflow from September 3,272 653 3,..’r12 653

Lavaca Colorado Lavaca Colorado October 2,569 2,429 2,569 2,429
River River River River November 114 573 114 573

Month (cfs) (cfs) (cfs) (cfs) December 1,065 496 ’ 1,065 496
(1) (2) (3.) (4) (5) Note: I cfs = 0.0283 m3/s; I lb =0.4536 kg; CPU times are for

January 37 293 37 424 personal computer MAG486SX33. The optimal fishery harvest under
February 1,I12 324 41 1,934 both methods = 6,693 (I,000 Ib).
March 1,283 293 37 837 ’CPU times (in seconds) = 0.73, and number of iterations = 14.
April 3,784 6,070 2,442 1,619 bCPU times (in seconds) = 6.12, and number of iterations = 33.
May 2.256 2,429 2,172 3,179
June 2.257 2.429 2.172 3,180
July 656 6,017 114 3.308 water inflow in January, February, March, November, and
August 732 2,990 114 2,900 December are relatively small.
September 3,272 653 2384 1,966 The effects of initial values are indicated by three different
October 2.569 2,429 2,171 3,179 initial values (freshwater inflows). In the first case, initialNovember 114 573 114 1,087
December 1,065 496 11I 844 values are equal to the lower bounds. In the second case,

Harvest (1.000 Ib) 6,693 7,294 initial values are the upper bounds, and in the third case,
Note: 1 cfs = 0.0283 m-~/s. 1 lb = 0.4536 kg. initial values equal the mean of the lower bounds and the

upper bounds. The results of these three cases for different
transition equations are listed in Table 8. Results indicate

TABLE 8. Optimal Fishery Harvests for Different Transition Equa- that the optimal fishery harvests are. the same for cases 2 and
tions and Different Initial Values (Using Bracket Penalty Function)3, but the case 1 results are different from those of case 2

Optimal and case 3 when using the nonlinear transition equation. Be-
cause of the nonlinearity of the transition equation, the SO-~hery lutions are not unique. The number of iterations are differentTransition Initial values harvest Number of

equations Cases , (cfs) (1,~00 lb) iterations for different initial values. The number of iterations for case
(1) (2) (3) (4) (5) 1 is the smallest and the number of iterations for case 2 is

the largest. For the linear transition equation, the number of
Linear 1 O~,~,i-, = Q 6,693 14 iterations reduces dramaticall~tnd the solution is uni.que for

-- 2 Q~,,,,., = ~ 6,693 9 different initial values.
3 Oi~,= = (t/2)(_Q + 4) 6,693 10 To compare the effect of the penalty functions, the La-

Nonlinear 1 Q~,~ = Q .. 7,239 164 grangian penalty function and hyperbolic penalty function are
2 Q~,,., = ~ 7,033 1,830 also used. The results for different penalty functions are shown3 O~.,~,t = (I/2)(2 + 4) 7,033 561

in Table 9. Table 9 indicates that for the nonlinear transition
Note: 1 lb = 0.4536 kg; I cfs = 0.0283 m~/s. equation, optimal fishery harvests are different for different

penalty functions but the differences are small. The bracket

TABLE 9. Optimal Fishery Harvest for Different Transition Equa- penalty function resulted in the smallest number of iterations
lions and Different Penalty Functions (O~.,~= = _Q.) and the Lagrangian penalty function has the largest number

of iterations. For the linear transition equation, the optimal
Optimal fishery harvests are basically the same for different penalty
fishery functions. The bracket penalty function has the smallest hum-

Transition harvest Number of ber of iterations and the hyperbolic penalty function has the
equations Penalty functions (1,000 Ib) iterations largest. The bracket penalty function seems to work well.

(I) (2) (3) (4) To compare the DDP method with the mathematical pro-
Linear Bracket penalty function 6,693 14 .gramming method, GAMS (Brooke et al. t988) was also used

Lagrangian penalty functions 6,696 29 to solve the problem with the results listed in Tables 10 and
Hyperbolic penalty function 6,691 34 11. For the linear transition equation, the optimal freshwaterNonlinear’ , Bracket penalty function 7,239 164
Lagrangian penalty function7,246 344 inflows and fishery harvest are the same using DDP and GAMS.
Hyperbolic penalty function 7,287 322 For the nonlinear transition equation, the optimal monthly

Note: IIb = 0.4536 kg. freshwater inflows are the same for the Lavaca River using
DDP and GAMS. The optimal monthly freshwater inflows
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TABLE !14 Optimal Monthly Freshwater Int~ows and Rsaery Her- procedure converge fast, but this function has several param-
uas~ (<x¢ ~4~’~eaT "~anai~tion Equations Using Different Metho-
dologies Compared with the mathematical programming code

MATHEMATICAL PRO- GAMS, the DDP method converges with fewer iterations and
GRAMMING M~HOD central processing unit (CPU) times.

DDP M~f’HOD, (USING GAMSp If the transition equation is a complicated equation, such
Optimal Freshwater Inflow’ Optimal Freshwater Inflow as the finite-difference equation, using the DDP method should

(as) o " (e/s) , be more advantageous. The next step in this research will be
~ , to use the two-dimensional hydrodynamic-salinity transport

Lavaea Colorado Lavaea Colorado model HYD-SAL as the simulator to replace the simplified
Month River River River . River linear or nonlinear transition equations described here. The

(1) (2) (3) (4) (5) work in this paper aims to demonstrate the potential of DDP
January 37 424 37 424 tO develop a more complex model that uses a two-dimensional
February 41 1,934 41 1,934 hydrodynamic-salinity transport model (simulator) for the
March 37 837 37 837 transition.
May 2,172 3,179 2,171 3,179
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